
Clipper Documentation
Release 0.2.0rc1

Dan Crankshaw

Jun 06, 2018

Contents

1 Clipper Connection 1

2 Container Managers 3

3 Model Deployers 5
3.1 Pure Python functions . 5
3.2 PySpark Models . 6

4 Exceptions 7

i

ii

CHAPTER 1

Clipper Connection

ClipperConnection is the primary way of starting and managing a Clipper cluster.

1

Clipper Documentation, Release 0.2.0rc1

2 Chapter 1. Clipper Connection

CHAPTER 2

Container Managers

Container managers abstract away the low-level tasks of creating and managing Clipper’s Docker containers in order
to allow Clipper to be deployed with different container orchestration frameworks. Clipper currently provides two
container manager implementations, one for running Clipper locally directly on Docker, and one for running Clipper
on Kubernetes.

3

Clipper Documentation, Release 0.2.0rc1

4 Chapter 2. Container Managers

CHAPTER 3

Model Deployers

Clipper provides a collection of model deployer modules to simplify the process of deploying a trained model to
Clipper and avoid the need to figure out how to save models and build custom Docker containers capable of serving
the saved models for some common use cases. With these modules, you can deploy models directly from Python to
Clipper.

Currently, Clipper provides two deployer modules, one to deploy arbitrary Python functions (within some constraints)
and the other to deploy PySpark models along with pre- and post-processing logic.

Note: You can find additional examples of using both model deployers in Clipper’s integration tests.

3.1 Pure Python functions

This module supports deploying pure Python function closures to Clipper. A function deployed with this module
must take a list of inputs as the sole argument, and return a list of strings of exactly the same length. The reason the
prediction function takes a list of inputs rather than a single input is to provide models the possibility of computing
multiple predictions in parallel to improve model performance. For example, many models that run on a GPU can
significantly improve throughput by batching predictions to better utilize the many parallel cores of the GPU.

In addition, the function must only use pure Python code. More specifically, all of the state captured by the function
will be pickled using Cloudpickle, so any state captured by the function must be able to be pickled. Most Python
libraries that use C extensions create objects that cannot be pickled. This includes many common machine-learning
frameworks such as PySpark, TensorFlow, PyTorch, and Caffe. You will have to create your own Docker containers
and call the native serialization libraries of these frameworks in order to deploy them.

The base Docker image we use to deploy these functions has already installed several common Python dependencies
(the dependencies are specified in the python_container_conda_deps.txt file included in this package). In
addition, this module will attempt to capture any additional Python modules your function uses. Additional modules
that were installed with Anaconda or Pip will be installed in the same way in your deployed Docker container when
the container is started. Additional local modules will be copied to the container along with the function.

5

https://github.com/ucbrise/clipper/tree/release-0.2/integration-tests
https://github.com/cloudpipe/cloudpickle

Clipper Documentation, Release 0.2.0rc1

While Clipper will try to capture additional dependencies and install them, these dependencies will not be built into
the Docker image but instead will be downloaded and installed each time a container is started. As a result, this can
significantly increase container initialization time (sometimes taking several minutes to start up). To remedy this, you
can create a new Docker image based on the default image clipper/python-closure-container:0.2 that
installs these additional dependencies.

For example, if you knew your function needed the Python package networkx, you could create the following
Dockerfile:

FROM clipper/python-closure-container:0.2
RUN pip install networkx

You would then use this Dockerfile to build a new image:

docker build -t python-closure-with-networkx .

Then, when you call deploy_python_closure or create_endpoint, instead of leaving the base_image
argument to be the default, you would set it to base_image="python-closure-with-networkx" and now
the container won’t need to install networkx each time th container is initialized.

Warning: Dependency-Capture Caveats: All of the dependency capture is performed on a best-effort basis
and you may run into edge-cases that Clipper cannot support. Furthermore, the dependency-capture logic relies
on being called from inside an Anaconda environment, so if you call this function from outside an Anaconda
environment no dependency capture will be attempted.*

3.2 PySpark Models

The PySpark model deployer module provides a small extension to the Python closure deployer to allow you to deploy
Python functions that include PySpark models as part of the state. PySpark models cannot be pickled and so they
break the Python closure deployer. Instead, they must be saved using the native PySpark save and load APIs. To get
around this limitation, the PySpark model deployer introduces two changes to the Python closure deployer discussed
above.

First, a function deployed with this module takes two additional arguments: a PySpark SparkSession object and
a PySpark model object, along with a list of inputs as provided to the Python closures in the deployers.python
module. It must still return a list of strings of the same length as the list of inputs.

Second, the pyspark.deploy_pyspark_model and pyspark.create_endpoint deployment methods
introduce two additional arguments:

• pyspark_model: A PySpark model object. This model will be serialized using the native PySpark serializa-
tion API and loaded into the deployed model container. The model container creates a long-lived SparkSession
when it is first initialized and uses that to load this model once at initialization time. The long-lived Spark-
Session and loaded model are provided by the container as arguments to the prediction function each time the
model container receives a new prediction request.

• sc: The current SparkContext. The PySpark model serialization API requires the SparkContext as an argument

The effect of these two changes is to allow the deployed prediction function to capture all pure Python state through
closure capture but explicitly declare the additional PySpark state which must be saved and loaded through a separate
process.

All caveats about dependency-capture still hold.

6 Chapter 3. Model Deployers

CHAPTER 4

Exceptions

7

	Clipper Connection
	Container Managers
	Model Deployers
	Pure Python functions
	PySpark Models

	Exceptions

