

API Documentation

Clipper Connection

ClipperConnection is the primary way of starting and managing a Clipper cluster.

Container Managers

Container managers abstract away the low-level tasks of creating and managing Clipper’s
Docker containers in order to allow Clipper to be deployed with different container
orchestration frameworks. Clipper currently provides two container manager implementations,
one for running Clipper locally directly on Docker, and one for running Clipper on Kubernetes.

Model Deployers

Clipper provides a collection of model deployer modules to simplify the process of deploying
a trained model to Clipper and avoid the need to figure out how to save models and
build custom Docker containers capable of serving the saved models for some common use
cases. With these modules, you can deploy models directly from Python to Clipper.

Currently, Clipper provides two deployer modules, one to deploy arbitrary Python functions
(within some constraints) and the other to deploy PySpark models along with pre- and post-processing
logic.

Note

You can find additional examples of using both model deployers in
Clipper’s integration tests [https://github.com/ucbrise/clipper/tree/release-0.2/integration-tests].

Pure Python functions

This module supports deploying pure Python function closures to Clipper. A function deployed with
this module must take a list of inputs as the sole argument, and return a list of strings of
exactly the same length. The reason the prediction function takes a list of inputs rather than
a single input is to provide models the possibility of computing multiple predictions in parallel
to improve model performance. For example, many models that run on a GPU can significantly improve
throughput by batching predictions to better utilize the many parallel cores of the GPU.

In addition, the function must only use pure Python code. More specifically, all of the state
captured by the function will be pickled using Cloudpickle [https://github.com/cloudpipe/cloudpickle],
so any state captured by the function must be able to be pickled. Most Python libraries that
use C extensions create objects that cannot be pickled. This includes many common machine-learning
frameworks such as PySpark, TensorFlow, PyTorch, and Caffe. You will have to create your own
Docker containers and call the native serialization libraries of these frameworks in order to deploy them.

The base Docker image we use to deploy these functions has already installed several common Python dependencies
(the dependencies are specified in the python_container_conda_deps.txt file included in this package).
In addition, this module will attempt to capture any additional Python modules your function uses. Additional
modules that were installed with Anaconda or Pip will be installed in the same way in your deployed Docker
container when the container is started. Additional local modules will be copied to the container along with
the function.

While Clipper will try to capture additional dependencies and install them, these dependencies will not be
built into the Docker image but instead will be downloaded and installed each time a container is started.
As a result, this can significantly increase container initialization time (sometimes taking several
minutes to start up). To remedy this, you can create a new Docker image based on the default
image clipper/python-closure-container:0.2 that installs these additional dependencies.

For example, if you knew your function needed the Python package networkx, you could create
the following Dockerfile:

FROM clipper/python-closure-container:0.2
RUN pip install networkx

You would then use this Dockerfile to build a new image:

docker build -t python-closure-with-networkx .

Then, when you call deploy_python_closure or create_endpoint, instead of
leaving the base_image argument to be the default, you would set it to
base_image="python-closure-with-networkx" and now the container won’t need to install
networkx each time th container is initialized.

Warning

Dependency-Capture Caveats:
All of the dependency capture is performed on a best-effort basis and you may
run into edge-cases that Clipper cannot support. Furthermore, the dependency-capture logic relies on
being called from inside an Anaconda environment, so if you call this function from outside
an Anaconda environment no dependency capture will be attempted.*

PySpark Models

The PySpark model deployer module provides a small extension to the Python closure deployer to allow
you to deploy Python functions that include PySpark models as part of the state. PySpark models
cannot be pickled and so they break the Python closure deployer. Instead, they must be saved using
the native PySpark save and load APIs. To get around this limitation, the PySpark model deployer
introduces two changes to the Python closure deployer discussed above.

First, a function deployed with this module takes two additional arguments: a PySpark SparkSession object
and a PySpark model object, along with a list of inputs as provided to the Python closures in the
deployers.python module. It must still return a list of strings of the same length as the list
of inputs.

Second, the pyspark.deploy_pyspark_model and pyspark.create_endpoint deployment methods
introduce two additional arguments:

	pyspark_model: A PySpark model object. This model will be serialized using the native PySpark
serialization API and loaded into the deployed model container. The model container creates a
long-lived SparkSession when it is first initialized and uses that to load this model once at initialization
time. The long-lived SparkSession and loaded model are provided by the container as arguments to the prediction
function each time the model container receives a new prediction request.

	sc: The current SparkContext. The PySpark model serialization API requires the SparkContext as an argument

The effect of these two changes is to allow the deployed prediction function to capture all pure Python
state through closure capture but explicitly declare the additional PySpark state which must be saved and
loaded through a separate process.

All caveats about dependency-capture still hold.

Exceptions

Index

 nav.xhtml

 Table of Contents

 		
 API Documentation

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

